Remove Data Quality Remove Decision Trees Remove Exploratory Data Analysis
article thumbnail

Understanding Data Science and Data Analysis Life Cycle

Pickl AI

Overview of Typical Tasks and Responsibilities in Data Science As a Data Scientist, your daily tasks and responsibilities will encompass many activities. You will collect and clean data from multiple sources, ensuring it is suitable for analysis. Data Cleaning Data cleaning is crucial for data integrity.

article thumbnail

Feature Engineering in Machine Learning

Pickl AI

Feature engineering in machine learning is a pivotal process that transforms raw data into a format comprehensible to algorithms. Through Exploratory Data Analysis , imputation, and outlier handling, robust models are crafted. What is Feature Engineering? Steps of Feature Engineering 1.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Artificial Intelligence Using Python: A Comprehensive Guide

Pickl AI

This section explores the essential steps in preparing data for AI applications, emphasising data quality’s active role in achieving successful AI models. Importance of Data in AI Quality data is the lifeblood of AI models, directly influencing their performance and reliability.

article thumbnail

Top 50+ Data Analyst Interview Questions & Answers

Pickl AI

I conducted thorough data validation, collaborated with stakeholders to identify the root cause, and implemented corrective measures to ensure data integrity. I would perform exploratory data analysis to understand the distribution of customer transactions and identify potential segments.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Key Components of Data Science Data Science consists of several key components that work together to extract meaningful insights from data: Data Collection: This involves gathering relevant data from various sources, such as databases, APIs, and web scraping.

article thumbnail

10 Best Tools for Machine Learning Model Visualization (2024)

DagsHub

Source: [link] Moreover, visualizing input and output data distributions helps assess the data quality and model behavior. LIME can help improve model transparency, build trust, and ensure that models make fair and unbiased decisions by identifying the key features that are more relevant in prediction-making.

article thumbnail

Large Language Models: A Complete Guide

Heartbeat

It is therefore important to carefully plan and execute data preparation tasks to ensure the best possible performance of the machine learning model. It is also essential to evaluate the quality of the dataset by conducting exploratory data analysis (EDA), which involves analyzing the dataset’s distribution, frequency, and diversity of text.