article thumbnail

Improving Data Pipelines with DataOps

Dataversity

It was only a few years ago that BI and data experts excitedly claimed that petabytes of unstructured data could be brought under control with data pipelines and orderly, efficient data warehouses. But as big data continued to grow and the amount of stored information increased every […].

DataOps 59
article thumbnail

Take the Route to AI Success with DataOps and MLOps

DataRobot Blog

The survey asked companies how they used two overlapping types of tools to deploy analytical models: Data operations (DataOps) tools, which focus on creating a manageable, maintainable, automated flow of quality-assured data. If deployment goes wrong, DataOps/MLOps can even help solve the problem. Survey Questions.

DataOps 52
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Supercharge your data strategy: Integrate and innovate today leveraging data integration

IBM Journey to AI blog

The data universe is expected to grow exponentially with data rapidly propagating on-premises and across clouds, applications and locations with compromised quality. This situation will exacerbate data silos, increase pressure to manage cloud costs efficiently and complicate governance of AI and data workloads.

article thumbnail

9 data governance strategies that will unlock the potential of your business data

IBM Journey to AI blog

Master data management (MDM) MDM tools keep an organization’s master data—such as customer, product or supplier information—consistent and up-to-date across systems and departments, preventing data silos and providing a unified view of critical data entities.

article thumbnail

Data Catalog: Part of the Solution – or Part of the Problem?

Alation

So feckless buyers may resort to buying separate data catalogs for use cases like…. Data governance. For example, the researching buyer may seek a catalog that scores 6 for governance, 10 for self-service, 4 for cloud data migration, and 2 for DataOps (let’s call this a {6, 10, 4, 2} profile). Self-service.

DataOps 52
article thumbnail

In Uncertain Times, Data Integrity is More Important Than Ever

Precisely

Business needs and challenges 77% of respondents say data-driven decision-making is the top goal of their data programs – and they’re also looking to accelerate those processes. Those who have already made progress toward that end have used advanced analytics tools that work outside of their application-based data silos.

article thumbnail

Why Lean Data Management Is Vital for Agile Companies

Pickl AI

Efficiency emphasises streamlined processes to reduce redundancies and waste, maximising value from every data point. Common Challenges with Traditional Data Management Traditional data management systems often grapple with data silos, which isolate critical information across departments, hindering collaboration and transparency.