Remove Data Warehouse Remove Database Remove Document
article thumbnail

Why using Infrastructure as Code for developing Cloud-based Data Warehouse Systems?

Data Science Blog

In the contemporary age of Big Data, Data Warehouse Systems and Data Science Analytics Infrastructures have become an essential component for organizations to store, analyze, and make data-driven decisions. So why using IaC for Cloud Data Infrastructures?

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

Flipboard

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis. or a later version) database.

ETL 138
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Exploring the fundamentals of online transaction processing databases

Dataconomy

What is an online transaction processing database (OLTP)? OLTP is the backbone of modern data processing, a critical component in managing large volumes of transactions quickly and efficiently. This approach allows businesses to efficiently manage large amounts of data and leverage it to their advantage in a highly competitive market.

Database 159
article thumbnail

Database Activity Monitoring – A Security Investment That Pays Off

Smart Data Collective

Since databases store companies’ valuable digital assets and corporate secrets, they are on the receiving end of quite a few cyber-attack vectors these days. How can database activity monitoring (DAM) tools help avoid these threats? What are the ties between DAM and data loss prevention (DLP) systems? How do DAM solutions work?

Database 130
article thumbnail

Serverless High Volume ETL data processing on Code Engine

IBM Data Science in Practice

The blog post explains how the Internal Cloud Analytics team leveraged cloud resources like Code-Engine to improve, refine, and scale the data pipelines. Background One of the Analytics teams tasks is to load data from multiple sources and unify it into a data warehouse. Database size limits of 10GB.

ETL 100
article thumbnail

A Few Proven Suggestions for Handling Large Data Sets

Smart Data Collective

There’s not much value in holding on to raw data without putting it to good use, yet as the cost of storage continues to decrease, organizations find it useful to collect raw data for additional processing. The raw data can be fed into a database or data warehouse. A document is susceptible to change.

Database 130
article thumbnail

Cookiecutter Data Science V2

DrivenData Labs

Better documentation with more examples , clearer explanations of the choices and tools, and a more modern look and feel. Find the latest at [link] (the old documentation will redirect here shortly). Project documentation ¶ As data science codebases live longer, code is often refactored into a package.