Remove Data Warehouse Remove Database Remove Hadoop
article thumbnail

Beginners Guide to Data Warehouse Using Hive Query Language

Analytics Vidhya

Introduction Have you ever wondered how big IT giants store and process huge amounts of data? Different organizations make use of different databases like an oracle database storing transactional data, MySQL for storing product data, and many others for different tasks. storing the data […].

article thumbnail

Introduction to Partitioned hive table and PySpark

Analytics Vidhya

This article was published as a part of the Data Science Blogathon What is the need for Hive? The official description of Hive is- ‘Apache Hive data warehouse software project built on top of Apache Hadoop for providing data query and analysis.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data lakes vs. data warehouses: Decoding the data storage debate

Data Science Dojo

When it comes to data, there are two main types: data lakes and data warehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Hadoop systems and data lakes are frequently mentioned together.

article thumbnail

Partitioning and Bucketing in Hive

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Hive is a popular data warehouse built on top of Hadoop that is used by companies like Walmart, Tiktok, and AT&T. It is an important technology for data engineers to learn and master.

article thumbnail

Apache Sqoop: Features, Architecture and Operations

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Apache SQOOP is a tool designed to aid in the large-scale export and import of data into HDFS from structured data repositories. Relational databases, enterprise data warehouses, and NoSQL systems are all examples of data storage.

article thumbnail

Differentiating Between Data Lakes and Data Warehouses

Smart Data Collective

The market for data warehouses is booming. While there is a lot of discussion about the merits of data warehouses, not enough discussion centers around data lakes. We talked about enterprise data warehouses in the past, so let’s contrast them with data lakes. Data Warehouse.

article thumbnail

How Will The Cloud Impact Data Warehousing Technologies?

Smart Data Collective

Dating back to the 1970s, the data warehousing market emerged when computer scientist Bill Inmon first coined the term ‘data warehouse’. Created as on-premise servers, the early data warehouses were built to perform on just a gigabyte scale.