Remove Data Warehouse Remove Events Remove SQL
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

Flipboard

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis. or a later version) database.

ETL 135
article thumbnail

A guide to Databricks SQL and Data Warehousing talks at Data + AI Summit 2023

databricks

It's been only 18 months since we announced Databricks SQL general availability - the serverless data warehouse on the Lakehouse - and we.

SQL 130
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Exploring the Power of Microsoft Fabric: A Hands-On Guide with a Sales Use Case

Data Science Dojo

These experiences facilitate professionals from ingesting data from different sources into a unified environment and pipelining the ingestion, transformation, and processing of data to developing predictive models and analyzing the data by visualization in interactive BI reports.

Power BI 222
article thumbnail

How Q4 Inc. used Amazon Bedrock, RAG, and SQLDatabaseChain to address numerical and structured dataset challenges building their Q&A chatbot

Flipboard

In this post, we discuss a Q&A bot use case that Q4 has implemented, the challenges that numerical and structured datasets presented, and how Q4 concluded that using SQL may be a viable solution. RAG with semantic search – Conventional RAG with semantic search was the last step before moving to SQL generation.

SQL 166
article thumbnail

Process Mining – Ist Celonis wirklich so gut? Ein Praxisbericht.

Data Science Blog

Dabei darf gerne in Erinnerung gerufen werden, dass Process Mining im Kern eine Graphenanalyse ist, die ein Event Log in Graphen umwandelt, Aktivitäten (Events) stellen dabei die Knoten und die Prozesszeiten die Kanten dar, zumindest ist das grundsätzlich so. Es handelt sich dabei also um eine Analysemethodik und nicht um ein Tool.

article thumbnail

Data Version Control for Data Lakes: Handling the Changes in Large Scale

ODSC - Open Data Science

In this article, we will delve into the concept of data lakes, explore their differences from data warehouses and relational databases, and discuss the significance of data version control in the context of large-scale data management. Schema Enforcement: Data warehouses use a “schema-on-write” approach.

article thumbnail

The Best Data Management Tools For Small Businesses

Smart Data Collective

The extraction of raw data, transforming to a suitable format for business needs, and loading into a data warehouse. Data transformation. This process helps to transform raw data into clean data that can be analysed and aggregated. Data analytics and visualisation.