Remove Data Warehouse Remove Hadoop Remove SQL
article thumbnail

Performance Tuning Practices in Hive

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Apache Hive is a data warehouse system built on top of Hadoop which gives the user the flexibility to write complex MapReduce programs in form of SQL- like queries.

Hadoop 333
article thumbnail

Introduction to Partitioned hive table and PySpark

Analytics Vidhya

This article was published as a part of the Data Science Blogathon What is the need for Hive? The official description of Hive is- ‘Apache Hive data warehouse software project built on top of Apache Hadoop for providing data query and analysis.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data lakes vs. data warehouses: Decoding the data storage debate

Data Science Dojo

When it comes to data, there are two main types: data lakes and data warehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Hadoop systems and data lakes are frequently mentioned together.

article thumbnail

Partitioning and Bucketing in Hive

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Hive is a popular data warehouse built on top of Hadoop that is used by companies like Walmart, Tiktok, and AT&T. It is an important technology for data engineers to learn and master.

article thumbnail

Essential data engineering tools for 2023: Empowering for management and analysis

Data Science Dojo

Data engineering tools offer a range of features and functionalities, including data integration, data transformation, data quality management, workflow orchestration, and data visualization. Essential data engineering tools for 2023 Top 10 data engineering tools to watch out for in 2023 1.

article thumbnail

How Will The Cloud Impact Data Warehousing Technologies?

Smart Data Collective

Dating back to the 1970s, the data warehousing market emerged when computer scientist Bill Inmon first coined the term ‘data warehouse’. Created as on-premise servers, the early data warehouses were built to perform on just a gigabyte scale. The post How Will The Cloud Impact Data Warehousing Technologies?

article thumbnail

Becoming a Data Engineer: 7 Tips to Take Your Career to the Next Level

Data Science Connect

In this blog post, we will be discussing 7 tips that will help you become a successful data engineer and take your career to the next level. Learn SQL: As a data engineer, you will be working with large amounts of data, and SQL is the most commonly used language for interacting with databases.