Remove Data Warehouse Remove Natural Language Processing Remove SQL
article thumbnail

Explore data with ease: Use SQL and Text-to-SQL in Amazon SageMaker Studio JupyterLab notebooks

AWS Machine Learning Blog

In the process of working on their ML tasks, data scientists typically start their workflow by discovering relevant data sources and connecting to them. They then use SQL to explore, analyze, visualize, and integrate data from various sources before using it in their ML training and inference.

SQL 129
article thumbnail

How Q4 Inc. used Amazon Bedrock, RAG, and SQLDatabaseChain to address numerical and structured dataset challenges building their Q&A chatbot

Flipboard

In this post, we discuss a Q&A bot use case that Q4 has implemented, the challenges that numerical and structured datasets presented, and how Q4 concluded that using SQL may be a viable solution. RAG with semantic search – Conventional RAG with semantic search was the last step before moving to SQL generation.

SQL 168
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unlock the power of structured data for enterprises using natural language with Amazon Q Business

AWS Machine Learning Blog

Natural language is ambiguous and imprecise, whereas data adheres to rigid schemas. For example, SQL queries can be complex and unintuitive for non-technical users. Domain-specific terminology further complicates the mapping process. The following diagram illustrates this workflow.

SQL 122
article thumbnail

Connecting Amazon Redshift and RStudio on Amazon SageMaker

AWS Machine Learning Blog

Many of the RStudio on SageMaker users are also users of Amazon Redshift , a fully managed, petabyte-scale, massively parallel data warehouse for data storage and analytical workloads. It makes it fast, simple, and cost-effective to analyze all your data using standard SQL and your existing business intelligence (BI) tools.

AWS 139
article thumbnail

Reinventing the data experience: Use generative AI and modern data architecture to unlock insights

AWS Machine Learning Blog

The natural language capabilities allow non-technical users to query data through conversational English rather than complex SQL. The AI and language models must identify the appropriate data sources, generate effective SQL queries, and produce coherent responses with embedded results at scale.

Database 101
article thumbnail

Build an automated insight extraction framework for customer feedback analysis with Amazon Bedrock and Amazon QuickSight

AWS Machine Learning Blog

Businesses can use LLMs to gain valuable insights, streamline processes, and deliver enhanced customer experiences. In addition, the generative business intelligence (BI) capabilities of QuickSight allow you to ask questions about customer feedback using natural language, without the need to write SQL queries or learn a BI tool.

AWS 128
article thumbnail

Exploring the AI and data capabilities of watsonx

IBM Journey to AI blog

This allows users to accomplish different Natural Language Processing (NLP) functional tasks and take advantage of IBM vetted pre-trained open-source foundation models. Encoder-decoder and decoder-only large language models are available in the Prompt Lab today. To bridge the tuning gap, watsonx.ai

AI 74