This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Skills and qualifications required for the role Data scientists require a diverse set of skills and qualifications to excel in their role. Programming skills: Data scientists should be proficient in programming languages such as Python, R, or SQL to manipulate and analyze data, automate processes, and develop statistical models.
ML Pros Deep-Dive into Machine Learning Techniques and MLOps Seth Juarez | Principal Program Manager, AI Platform | Microsoft Learn how new, innovative features in Azure machine learning can help you collaborate and streamline the management of thousands of models across teams. Check out a few of the highlights from each group below.
Statistics Understand descriptive statistics (mean, median, mode) and inferential statistics (hypothesistesting, confidence intervals). These concepts help you analyse and interpret data effectively. They introduce two primary data structures, Series and Data Frames, which facilitate handling structured data seamlessly.
In Inferential Statistics, you can learn P-Value , T-Value , HypothesisTesting , and A/B Testing , which will help you to understand your data in the form of mathematics. For Data Analysis you can focus on such topics as Feature Engineering , DataWrangling , and EDA which is also known as Exploratory Data Analysis.
Accordingly, you need to make sense of the data that you derive from the various sources for which knowledge in probability, hypothesistesting, regression analysis is important. Data Visualisation: The ability to present insights effectively through visualisation of data is an appreciated skill.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content