This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Statistics Understand descriptive statistics (mean, median, mode) and inferential statistics (hypothesistesting, confidence intervals). These concepts help you analyse and interpret data effectively. They introduce two primary data structures, Series and Data Frames, which facilitate handling structured data seamlessly.
Here are some key areas often assessed: Programming Proficiency Candidates are often tested on their proficiency in languages such as Python, R, and SQL, with a focus on data manipulation, analysis, and visualization. Differentiate between supervised and unsupervised learning algorithms.
Understanding its core components is essential for aspiring data scientists and professionals looking to leverage data effectively. Statistics and Mathematics At its core, Data Science relies heavily on statistical methods and mathematical principles. Ensuring data quality is vital for producing reliable results.
In Inferential Statistics, you can learn P-Value , T-Value , HypothesisTesting , and A/B Testing , which will help you to understand your data in the form of mathematics. In Descriptive Statistics, you need to focus on topics like Mean , Median , Mode, and Standard Deviation.
Explore Machine Learning with Python: Become familiar with prominent Python artificial intelligence libraries such as sci-kit-learn and TensorFlow. Begin by employing algorithms for supervisedlearning such as linear regression , logistic regression, decision trees, and support vector machines.
Data Cleaning and Transformation Techniques for preprocessing data to ensure quality and consistency, including handling missing values, outliers, and data type conversions. Students should learn about datawrangling and the importance of data quality.
D Data Mining : The process of discovering patterns, insights, and knowledge from large datasets using various techniques such as classification, clustering, and association rule learning. DataWrangling: The cleaning, transforming, and structuring of raw data into a format suitable for analysis.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content