Remove Decision Trees Remove EDA Remove Hypothesis Testing
article thumbnail

Data Analysis vs. Data Visualization – More Than Just Pretty Charts

Pickl AI

Exploratory Data Analysis (EDA): Using statistical summaries and initial visualisations (yes, visualisation plays a role within analysis!) Hypothesis Testing: Formally testing assumptions or theories about the data using statistical methods to determine if observed patterns are statistically significant or likely due to chance.

article thumbnail

Understanding Data Science and Data Analysis Life Cycle

Pickl AI

Also Read: Explore data effortlessly with Python Libraries for (Partial) EDA: Unleashing the Power of Data Exploration. Each phase, from data collection and cleaning to analysis and visualisation, is critical in ensuring the outcomes’ accuracy, reliability, and actionable nature, thus driving informed decision-making.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

Statistical Concepts A strong understanding of statistical concepts, including probability, hypothesis testing, regression analysis, and experimental design, is paramount in Data Science roles. It forms the basis for many statistical tests and estimators used in hypothesis testing and confidence interval estimation.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Decision Trees: A supervised learning algorithm that creates a tree-like model of decisions and their possible consequences, used for both classification and regression tasks. Exploratory Data Analysis (EDA): Analysing and visualising data to discover patterns, identify anomalies, and test hypotheses.