This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
And retailers frequently leverage data from chatbots and virtual assistants, in concert with ML and natural language processing (NLP) technology, to automate users’ shopping experiences. Supervised machine learningSupervised machine learning is a type of machine learning where the model is trained on a labeled dataset (i.e.,
Machine Learning algorithms are trained on large amounts of data, and they can then use that data to make predictions or decisions about new data. There are three main types of Machine Learning: supervisedlearning, unsupervised learning, and reinforcement learning.
DecisionTrees: A supervisedlearning algorithm that creates a tree-like model of decisions and their possible consequences, used for both classification and regression tasks. ExploratoryDataAnalysis (EDA): Analysing and visualising data to discover patterns, identify anomalies, and test hypotheses.
Statistical Concepts A strong understanding of statistical concepts, including probability, hypothesis testing, regression analysis, and experimental design, is paramount in Data Science roles. This theorem is crucial in inferential statistics as it allows us to make inferences about the population parameters based on sample data.
Machine learning is a subset of artificial intelligence that enables computers to learn from data and improve over time without being explicitly programmed. Explain the difference between supervised and unsupervised learning. What are the advantages and disadvantages of decisiontrees ?
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content