Remove Decision Trees Remove Hadoop Remove Hypothesis Testing
article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Some of the most notable technologies include: Hadoop An open-source framework that allows for distributed storage and processing of large datasets across clusters of computers. It is built on the Hadoop Distributed File System (HDFS) and utilises MapReduce for data processing. Once data is collected, it needs to be stored efficiently.

article thumbnail

Data Scientist Salary in India’s Top Tech Cities

Pickl AI

Here is the tabular representation of the same: Technical Skills Non-technical Skills Programming Languages: Python, SQL, R Good written and oral communication Data Analysis: Pandas, Matplotlib, Numpy, Seaborn Ability to work in a team ML Algorithms: Regression Classification, Decision Trees, Regression Analysis Problem-solving capability Big Data: (..)

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Introduction to R Programming For Data Science

Pickl AI

It provides functions for descriptive statistics, hypothesis testing, regression analysis, time series analysis, survival analysis, and more. Packages like dplyr, data.table, and sparklyr enable efficient data processing on big data platforms such as Apache Hadoop and Apache Spark.

article thumbnail

Best Resources for Kids to learn Data Science with Python

Pickl AI

Begin by employing algorithms for supervised learning such as linear regression , logistic regression, decision trees, and support vector machines. Accordingly, you need to make sense of the data that you derive from the various sources for which knowledge in probability, hypothesis testing, regression analysis is important.

article thumbnail

Introduction to applied data science 101: Key concepts and methodologies 

Data Science Dojo

Statistical analysis and hypothesis testing Statistical methods provide powerful tools for understanding data. Hypothesis testing, correlation, and regression analysis, and distribution analysis are some of the essential statistical tools that data scientists use.