article thumbnail

10 Free Machine Learning Courses from Top Universities

Flipboard

Learn the basics of machine learning, including classification, SVM, decision tree learning, neural networks, convolutional, neural networks, boosting, and K nearest neighbors.

article thumbnail

Problem-solving tools offered by digital technology

Data Science Dojo

Zheng’s “Guide to Data Structures and Algorithms” Parts 1 and Part 2 1) Big O Notation 2) Search 3) Sort 3)–i)–Quicksort 3)–ii–Mergesort 4) Stack 5) Queue 6) Array 7) Hash Table 8) Graph 9) Tree (e.g.,

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Feature scaling: A way to elevate data potential

Data Science Dojo

However, it can be very effective when you are working with multivariate analysis and similar methods, such as Principal Component Analysis (PCA), Support Vector Machine (SVM), K-means, Gradient Descent, Artificial Neural Networks (ANN), and K-nearest neighbors (KNN).

article thumbnail

Generative vs Discriminative AI: Understanding the 5 Key Differences

Data Science Dojo

Some common models used are as follows: Logistic Regression – it classifies by predicting the probability of a data point belonging to a class instead of a continuous value Decision Trees – uses a tree structure to make predictions by following a series of branching decisions Support Vector Machines (SVMs) – create a clear decision (..)

article thumbnail

GIS Machine Learning With R-An Overview.

Towards AI

We shall look at various types of machine learning algorithms such as decision trees, random forest, K nearest neighbor, and naïve Bayes and how you can call their libraries in R studios, including executing the code. Decision Tree and R. Types of machine learning with R.

article thumbnail

Top 8 Machine Learning Algorithms

Data Science Dojo

decision trees, support vector regression) that can model even more intricate relationships between features and the target variable. Decision Trees: These work by asking a series of yes/no questions based on data features to classify data points. converting text to numerical features) is crucial for model performance.

article thumbnail

Stacking Ensemble Method for Brain Tumor Classification: Performance Analysis

Towards AI

The three weak learner models used for this implementation were k-nearest neighbors, decision trees, and naive Bayes. For the meta-model, k-nearest neighbors were used again. A meta-model is trained on this second-level training data to produce the final predictions.