This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
” Data management and manipulation Data scientists often deal with vast amounts of data, so it’s crucial to understand databases, data architecture, and query languages like SQL. It involves developing algorithms that can learn from and make predictions or decisions based on data. This is where data visualization comes in.
It covers essential topics such as SQL queries, data visualization, statistical analysis, machine learning concepts, and data manipulation techniques. Key Takeaways SQL Mastery: Understand SQL’s importance, join tables, and distinguish between SELECT and SELECT DISTINCT. How do you join tables in SQL?
Modeling: Build a logistic regression or decisiontree model to predict the likelihood of a customer churning based on various factors. Tools Commonly Used Business Intelligence Platforms: Tableau, Microsoft PowerBI, Qlik Sense, Google Data Studio (Looker Studio) Programming Libraries: Matplotlib, Seaborn (Python); ggplot2 (R); D3.js
Here is the tabular representation of the same: Technical Skills Non-technical Skills Programming Languages: Python, SQL, R Good written and oral communication Data Analysis: Pandas, Matplotlib, Numpy, Seaborn Ability to work in a team ML Algorithms: Regression Classification, DecisionTrees, Regression Analysis Problem-solving capability Big Data: (..)
Grasp the Fundamentals of Data Analysis and Management Build a strong foundation in Data Analysis by learning data manipulation techniques using SQL and Excel. Focus on Python and R for Data Analysis, along with SQL for database management. This foundational knowledge is essential for any Data Science project.
While knowing Python, R, and SQL is expected, youll need to go beyond that. Similar to previous years, SQL is still the second most popular skill, as its used for many backend processes and core skills in computer science and programming. Employers arent just looking for people who can program.
Understanding the differences between SQL and NoSQL databases is crucial for students. Key topics include: Supervised Learning Understanding algorithms such as linear regression, decisiontrees, and support vector machines, and their applications in Big Data. js for creating interactive visualisations.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content