Remove Deep Learning Remove Download Remove ML
article thumbnail

Map Earth’s vegetation in under 20 minutes with Amazon SageMaker

AWS Machine Learning Blog

Amazon SageMaker supports geospatial machine learning (ML) capabilities, allowing data scientists and ML engineers to build, train, and deploy ML models using geospatial data. SageMaker Processing provisions cluster resources for you to run city-, country-, or continent-scale geospatial ML workloads.

ML 108
article thumbnail

Use Snowflake as a data source to train ML models with Amazon SageMaker

AWS Machine Learning Blog

Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and easily build and train ML models, and then directly deploy them into a production-ready hosted environment. Create a custom container image for ML model training and push it to Amazon ECR.

ML 129
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Train and deploy ML models in a multicloud environment using Amazon SageMaker

AWS Machine Learning Blog

In these scenarios, as you start to embrace generative AI, large language models (LLMs) and machine learning (ML) technologies as a core part of your business, you may be looking for options to take advantage of AWS AI and ML capabilities outside of AWS in a multicloud environment.

ML 125
article thumbnail

Unlock cost savings with the new scale down to zero feature in SageMaker Inference

Flipboard

This long-awaited capability is a game changer for our customers using the power of AI and machine learning (ML) inference in the cloud. The scale down to zero feature presents new opportunities for how businesses can approach their cloud-based ML operations.

ML 149
article thumbnail

Llama 3.3 70B now available in Amazon SageMaker JumpStart

AWS Machine Learning Blog

Getting started with SageMaker JumpStart SageMaker JumpStart is a machine learning (ML) hub that can help accelerate your ML journey. This feature eliminates one of the major bottlenecks in deployment scaling by pre-caching container images, removing the need for time-consuming downloads when adding new instances.

AWS 100
article thumbnail

Supercharge your auto scaling for generative AI inference – Introducing Container Caching in SageMaker Inference

AWS Machine Learning Blog

These improvements are available across a wide range of SageMaker’s Deep Learning Containers (DLCs), including Large Model Inference (LMI, powered by vLLM and multiple other frameworks), Hugging Face Text Generation Inference (TGI), PyTorch (Powered by TorchServe), and NVIDIA Triton.

AI 99
article thumbnail

Computer Vision and Deep Learning for Education

PyImageSearch

This last blog of the series will cover the benefits, applications, challenges, and tradeoffs of using deep learning in the education sector. To learn about Computer Vision and Deep Learning for Education, just keep reading. As soon as the system adapts to human wants, it automates the learning process accordingly.