article thumbnail

Revolutionize your ML workflow: 5 drag and drop tools for streamlining your pipeline

Data Science Dojo

Drag and drop tools have revolutionized the way we approach machine learning (ML) workflows. Gone are the days of manually coding every step of the process – now, with drag-and-drop interfaces, streamlining your ML pipeline has become more accessible and efficient than ever before. H2O.ai H2O.ai

ML 195
article thumbnail

Create a Quick Yet Elegant Demo of Your Incredible AI Application

Towards AI

The previous parts of this blog series demonstrated how to build an ML application that takes a YouTube video URL as input, transcribes the video, and distills the content into a concise and coherent executive summary. Before proceeding, you may want to have a look at the resulting demo or the code hosted on Hugging Face U+1F917 Spaces.

AI 105
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 1: PySDK Improvements

Flipboard

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and effortlessly build, train, and deploy machine learning (ML) models at any scale. For example: input = "How is the demo going?" Refer to demo-model-builder-huggingface-llama2.ipynb output = "Comment la démo va-t-elle?"

ML 167
article thumbnail

10 Technical Blogs for Data Scientists to Advance AI/ML Skills

DataRobot Blog

With a goal to help data science teams learn about the application of AI and ML, DataRobot shares helpful, educational blogs based on work with the world’s most strategic companies. Data Scientists of Varying Skillsets Learn AI – ML Through Technical Blogs. Watch a demo. See DataRobot in Action. Bureau of Labor Statistics.

article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2023

AWS Machine Learning Blog

Now all you need is some guidance on generative AI and machine learning (ML) sessions to attend at this twelfth edition of re:Invent. In addition to several exciting announcements during keynotes, most of the sessions in our track will feature generative AI in one form or another, so we can truly call our track “Generative AI and ML.”

AWS 139
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

This year, generative AI and machine learning (ML) will again be in focus, with exciting keynote announcements and a variety of sessions showcasing insights from AWS experts, customer stories, and hands-on experiences with AWS services.

AWS 108
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Many practitioners are extending these Redshift datasets at scale for machine learning (ML) using Amazon SageMaker , a fully managed ML service, with requirements to develop features offline in a code way or low-code/no-code way, store featured data from Amazon Redshift, and make this happen at scale in a production environment.

ML 123