This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
There are many well-known libraries and platforms for dataanalysis such as Pandas and Tableau, in addition to analytical databases like ClickHouse, MariaDB, Apache Druid, Apache Pinot, Google BigQuery, Amazon RedShift, etc. These tools will help make your initial data exploration process easy.
Integration also helps avoid duplication and redundancy of data, providing a comprehensive view of the information. Exploratorydataanalysis (EDA) Before preprocessing data, conducting exploratorydataanalysis is crucial to understand the dataset’s characteristics, identify patterns, detect outliers, and validate missing values.
ExploratoryDataAnalysis (EDA) ExploratoryDataAnalysis (EDA) is an approach to analyse datasets to uncover patterns, anomalies, or relationships. The primary purpose of EDA is to explore the data without any preconceived notions or hypotheses.
Their primary responsibilities include: Data Collection and Preparation Data Scientists start by gathering relevant data from various sources, including databases, APIs, and online platforms. They clean and preprocess the data to remove inconsistencies and ensure its quality. Big Data Technologies: Hadoop, Spark, etc.
For instance, feature engineering and exploratorydataanalysis (EDA) often require the use of visualization libraries like Matplotlib and Seaborn. Moreover, tools like Power BI and Tableau can produce remarkable results.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content