article thumbnail

Image Captioning: Bridging Computer Vision and Natural Language Processing

Heartbeat

Pixabay: by Activedia Image captioning combines natural language processing and computer vision to generate image textual descriptions automatically. The CNN is typically trained on a large-scale dataset, such as ImageNet, using techniques like supervised learning.

article thumbnail

The Rise of AI-Powered Text Messaging in Business

Analytics Vidhya

Introduction In recent years, the integration of Artificial Intelligence (AI), specifically Natural Language Processing (NLP) and Machine Learning (ML), has fundamentally transformed the landscape of text-based communication in businesses.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Types of Machine Learning: All You Need to Know

Pickl AI

The answer lies in the various types of Machine Learning, each with its unique approach and application. In this blog, we will explore the four primary types of Machine Learning: Supervised Learning, UnSupervised Learning, semi-Supervised Learning, and Reinforcement Learning.

article thumbnail

Counting shots, making strides: Zero, one and few-shot learning unleashed 

Data Science Dojo

Zero-shot, one-shot, and few-shot learning are redefining how machines adapt and learn, promising a future where adaptability and generalization reach unprecedented levels. Source: Photo by Hal Gatewood on Unsplash In this exploration, we navigate from the basics of supervised learning to the forefront of adaptive models.

article thumbnail

Generative vs Discriminative AI: Understanding the 5 Key Differences

Data Science Dojo

A visual representation of discriminative AI – Source: Analytics Vidhya Discriminative modeling, often linked with supervised learning, works on categorizing existing data. Generative AI often operates in unsupervised or semi-supervised learning settings, generating new data points based on patterns learned from existing data.

article thumbnail

Innovation Unleashed: The Hottest NLP Technologies of 2022

Analytics Vidhya

Introduction There have been many recent advances in natural language processing (NLP), including improvements in language models, better representation of the linguistic structure, advancements in machine translation, increased use of deep learning, and greater use of transfer learning.

article thumbnail

The evolution of LLM embeddings: An overview of NLP

Data Science Dojo

Hence, acting as a translator it converts human language into a machine-readable form. These embeddings when particularly used for natural language processing (NLP) tasks are also referred to as LLM embeddings. The two main approaches of interest for embeddings include unsupervised and supervised learning.